Modelling the gas-liquid flow in an ironmaking blast furnace
by A.B. Yu, G.X. Wang, S.J. Chew, P. Zulli
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 4, No. 1, 2004

Abstract: A mathematical model is presented to describe the discrete flow of liquid within and below the blast furnace cohesive zone. The model is developed based on a force balance approach to describe the liquid flow and a stochastic treatment to take into account the complex packing structure. The interaction between gas and liquid flows has been included in the governing equations, so that the localised liquid flow in a packed bed can be modelled with or without gas flow. The validity is demonstrated by comparing model predictions and measurements obtained under different gas and/or liquid flow conditions. Application of the model to blast furnace is discussed with reference to the interaction between gas and liquid phases and the effect of cohesive zone shape.

Online publication date: Wed, 24-Dec-2003

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com