Mechanism of transformation plasticity and the unified constitutive equation for transformation-thermo-mechanical plasticity with some applications
by Tatsuo Inoue
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 5, No. 4/5, 2010

Abstract: Transformation plasticity is known to occur in weaker mother phase due to the progress of new phase with higher strength. A phenomenological mechanism is discussed, in the first part of the paper, why the transformation plastic deformation takes place under a stress level even lower than the characteristic yield stress of mother phase: This is principally based on the difference in thermal expansion coefficient in both phases. Bearing in mind that it is also a kind of plastic strain, a unified plastic flow theory is derived by introducing the effect of progressing new phase into the yield function of stress, temperature and plasticity related parameters. Thus obtained strain rate reveals to include the transformation plastic part in addition to mechanical and thermal plastic components. As examples of the application of the theory, temperature-elongation diagrams depending on applied stress are shown. Inelastic response for a fire resistant steel under varying temperature and stress as a model of a fire followed by the extinguishment is simulated being compared with experimental data.

Online publication date: Mon, 20-Dec-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com