Phase evolution, microstructure characteristics and properties of Cr3C2-Ni cermets prepared by reactive sintering
by Kristjan Juhani, Juri Pirso, Sergei Letunovits, Mart Viljus
International Journal of Materials and Product Technology (IJMPT), Vol. 40, No. 1/2, 2011

Abstract: Cr3C2-Ni cermets are perspective materials to operate in aggressive and abrasive environment. Recently a novel method – reactive sintering of chromium carbide based cermets – was invented. Elemental powders of chromium, nickel and carbon black were milled in a high-energy ball mill (attritor) to nanocrystalline size and pressed to compacts. The thermal treatment (sintering) caused at first the formation of chromium carbide grains in situ and following liquid phase sintering of alloy in one cycle. Since the reactive sintering has not been used for the production of Cr3C2-Ni cermets before, the influence of chromium to carbon ratio and the influence of different alloying elements on the microstructure and properties of the chromium carbide based cermets was investigated. It is shown that mechanical properties and abrasive erosion wear resistance depend on the chromium to carbon ratio, alloying additives and sintering method.

Online publication date: Sat, 28-Feb-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com