A dynamic max-min ant system for solving the travelling salesman problem
by Mohammad Reza Bonyadi, Hamed Shah-Hosseini
International Journal of Bio-Inspired Computation (IJBIC), Vol. 2, No. 6, 2010

Abstract: In this paper, a modified max-min ant system, called dynamic max-min ant system (DMAS) is proposed to solve the travelling salesman problem (TSP). The proposed algorithm updates the value of τmin, the lower bound of pheromone trails during its run. In addition, the used parameters for the DMAS are adjusted to improve the performance of the method. Furthermore, a local search based on 2-Opt is adjoined to the DMAS and the results are reported. Moreover, the DMAS is applied to some standard TSPs and its results are compared to some previous works. Results show that the proposed method outperforms several other well-known population-based methods in many cases. Also, in some standard problems, the proposed method improves the shortest known tour lengths. Moreover, experiments show that the standard deviation of tour lengths that are found by DMAS is very small, which exhibits the stability of the proposed algorithm.

Online publication date: Sun, 21-Nov-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com