A two-dimensional computational study of the flow effect on the acoustic behaviour of Helmholtz resonators
by Asim Iqbal, Ahmet Selamet
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 6, No. 2/3/4, 2010

Abstract: Impact of mean flow on the acoustic attenuation performance of a Helmholtz resonator is investigated computationally. To determine the time-dependent flow field, two-dimensional unsteady, turbulent, and compressible Navier-Stokes equations are solved. Pressure obtained from the flow field is used to calculate the Helmholtz resonator's transmission loss at different velocities. Increasing the mean flow velocity in the main duct is shown computationally to reduce the peak transmission loss in general and force a shift in the fundamental resonance frequency to a higher value. These predictions are consistent with the trends observed in the experimental studies available in the literature. Also, at discrete Strouhal numbers, the simulations capture the flow-acoustic coupling which transforms the Helmholtz resonator essentially to a noise generator. The approach presented here demonstrates the ability of a numerical tool to study the complex interactions of the flow field with the acoustics of Helmholtz resonators effectively.

Online publication date: Fri, 05-Nov-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com