Microstructural properties of Fe-doped ZnO thin films and first-principals calculations
by R. Bensalem, S. Sammar, S. Alleg, M. Ibrir, S. Oudjertli, M.S. Aida, J.J. Sunol
International Journal of Nanoparticles (IJNP), Vol. 3, No. 3, 2010

Abstract: Microstructural, and morphological properties of Fe-doped nanostructured ZnO semiconducting thin films have been investigated by optical, SEM, XRD, and first-principals computing. ZnO thin films grown on glass and Si substrates by the spray pyrolysis method at 300°C, and under ambient atmosphere, have initial preferred (002) orientation. XRD peak intensity changed rapidly as the Fe-concentration is increased from 1 to 5 mol.%, despite the fact that lattice parameters changed monotonously. Fe ions occupied the Zn sites without changing the original hexagonal wurtzite structure. All Fe-doped ZnO films are polycrystalline with an average grain size of 23 nm. Band structure and density of states of the possible phases of crystal ZnO computed using first principal methods, confirmed that pure ZnO is a direct band gap semiconductor when obtained in the B3 or B4 type structure phase. However, the B1 phase turned out to be an indirect band gap semiconductor.

Online publication date: Thu, 07-Oct-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanoparticles (IJNP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com