An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios
by Sterling J. Anderson, Steven C. Peters, Tom E. Pilutti, Karl Iagnemma
International Journal of Vehicle Autonomous Systems (IJVAS), Vol. 8, No. 2/3/4, 2010

Abstract: This paper formulates the vehicle navigation task as a constrained optimal control problem with constraints bounding a traversable region of the environment. A model predictive controller iteratively plans an optimal vehicle trajectory through the constrained corridor and uses this trajectory to establish the minimum threat posed to the vehicle given its current state and driver inputs. Based on this threat assessment, the level of controller intervention required to prevent departure from the traversable corridor is calculated and driver/controller inputs are scaled accordingly. Simulated and experimental results are presented to demonstrate multiple threat metrics and configurable intervention laws.

Online publication date: Mon, 04-Oct-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Autonomous Systems (IJVAS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com