Design study of long-life Pb-Bi cooled fast reactor with natural uranium as fuel cycle input using modified CANDLE burn-up scheme
by Zaki Su'ud, Hiroshi Sekimoto
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 5, No. 4, 2010

Abstract: This paper reports a conceptual design study of Pb-Bi cooled fast reactors with a fuel cycle that needs only natural uranium input. In this design, the CANDLE burn-up strategy is slightly modified by introducing discrete regions. The reactor cores are subdivided into several parts with the same volume in the axial directions. The natural uranium is initially put in region 1, after one cycle of ten years of burn-up it is shifted to region 2 and region 1 is filled with fresh natural uranium fuel. This concept is applied to all regions. From the parametric survey results, the region shuffling scheme and fuel volume fraction have large effect on the criticality of the core. Also, by putting regions 1 and 2 near region 10, we get some significant gain in effective multiplication factors. Core radius, core axial width, radial reflector width and axial reflector width have some impact on the initial effective multiplication factor value, but not as great.

Online publication date: Thu, 30-Sep-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com