The effect of atomic force microscope probe size on indentation tests simulated using realistic surface forces
by Michael A. Graham, Zachary C. Grasley, Rashid K. Abu Al-Rub
International Journal of Materials and Structural Integrity (IJMSI), Vol. 4, No. 2/3/4, 2010

Abstract: The effects of the size and shape of an indenter tip used in a nanoscale indentation test (such as with an atomic force microscope) are studied using realistic, finite-range surface forces to describe the contact and extended-range interaction of the indenter and sample. Sphero-conical indenters with tips ranging from sharp-pointed to very rounded tips (similar to spherical tips) are studied. A continuum Lennard-Jones adhesion potential and a Poisson-Boltzmann exponential repulsion law are used to study adhesive and repulsive-only interactions, respectively. The size of the tip affects the qualitative response for an adhesive surface force potential, with increasingly rounded tips exhibiting a more pronounced jump into contact and a greater overall adhesion. The effects of tip size are less pronounced for pure repulsion.

Online publication date: Tue, 14-Sep-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com