Two-scale modelling of effects of microstructure and thermomechanical properties on dynamic performance of an aluminium alloy
by J.D. Clayton
International Journal of Materials and Structural Integrity (IJMSI), Vol. 4, No. 2/3/4, 2010

Abstract: Influences of microstructure and properties of an aluminium alloy on resistance to dynamic perforation are predicted using a decoupled multiscale modelling approach. At the scale of individual grains, a crystal plasticity model is developed accounting for finite elastic and plastic deformations, thermal softening and energy storage mechanisms linked to microscopic residual stress fields induced by line defects and second-phase particles. An averaging scheme is invoked to compute macroscopic stress-deformation responses corresponding to various microstructures. The results of the averaging process motivate choices of parameters entering a macroscopic plasticity model, with different parameter sets corresponding to different microstructures. This macroscopic model, with various parameter sets, is in turn used to simulate impact and perforation of a thin plate of the aluminium alloy by a cylindrical projectile. The results provide quantitative assessments of possible benefits of texturing, insertion of strengthening and energy storage mechanisms and enhancement of ductility on performance of the alloy.

Online publication date: Tue, 14-Sep-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Structural Integrity (IJMSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com