Temperature dependent thermal conductivity enhancement of copper oxide nanoparticles dispersed in propylene glycol-water base fluid
by M.T. Naik, G. Ranga Janardhana
International Journal of Nanoparticles (IJNP), Vol. 3, No. 2, 2010

Abstract: Nanofluids are new generation heat transfer fluids and are preferred over conventional fluids for heat transfer applications. Nanofluids are characterised by their enhanced thermal conductivities, high energy density and better heat transfer capabilities than the base fluids without nanoparticles. Glycol based fluids exhibit an anti-freezing characteristics at sub zero temperatures and hence widely used in heat exchangers in cold regions. In the present experimental work, CuO nanoparticles of size less than 50 nm are suspended in the base fluid of propylene glycol-water (60:40 by volume) mixture, in the range of 0.025, 0.1, 0.4, 0.8 and 1.2% volume fraction and CuO nanofluids were prepared. The effective thermal conductivity of nanofluids for different particle volume concentration is measured at different temperatures of nanofluids. The experimental results obtained show that thermal conductivity of nanofluids increases with increase in temperature and particle volume concentration of nanofluids. The conductivity data obtained in present investigation are compared with conductivity models and correlations available in the literature.

Online publication date: Wed, 25-Aug-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanoparticles (IJNP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com