Numerical simulation of unsteady flow in a multistage centrifugal pump using sliding mesh technique
by Si Huang, A.A. Mohamad, K. Nandakumar, Z.Y. Ruan, D.K. Sang
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 10, No. 4, 2010

Abstract: In this work, three-dimensional, unsteady Reynolds-Averaged Navier–Stokes (RANS) equations with standard k-ϵ turbulence models are solved by employing sliding mesh technique within an entire stage of a multistage diffuser pump to investigate transient flow field and pressure fluctuations due to the interaction between impeller and diffuser vanes. Sliding mesh calculation is carried out as the impeller zones slide (i.e., rotate) relative to diffuser zone along the grid interface in discrete time steps. The complicated time-periodic and spatial-periodic characteristics as well as rotor–stator interaction phenomena inside the pump stage are simulated and analysed to understand dynamic variation of the interior flow field and interference and finally to aim at optimal design.

Online publication date: Wed, 04-Aug-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com