Small-world effects in wireless agent sensor networks
by K.A. Hawick, H.A. James
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 4, No. 3, 2010

Abstract: We describe a model for analysing the coverage graph from physical placement of mobile agents or sensor devices to improve coverage, fault tolerance and network lifetime. The planar graph for the devices is augmented by small-world network 'short-cuts'; the network then has properties intermediate between those of a fixed regular mesh and a random graph. Results from computational physics involving percolation and scaling phenomena help interpret network behaviours. Individual mobile sensors are modelled as points in Euclidean space with a circular region of influence and awareness; clustering algorithms are used to construct connectivity graphs which are analysed using conventional methods.

Online publication date: Wed, 28-Jul-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com