Teaching the applications of optimisation in game theory's zero sum and non-zero sum games
by William P. Fox
International Journal of Data Analysis Techniques and Strategies (IJDATS), Vol. 2, No. 3, 2010

Abstract: We apply linear and non-linear programming to find the solutions for Nash equilibriums and Nash arbitration in game theory problems. Linear programming was shown as a viable method for solving mixed strategy zero-sum games. We review this methodology and suggest a class of zero-sum game theory problems that are well suited for linear programming. We applied this theory of linear programming to non-zero sum games. We suggest and apply a separate formulation for a maximising linear programming problem for each player. We move on the Nash arbitration method and remodel this problem as a non-linear optimisation problem. We take the game's payoff matrix and we form a convex polygon. Having found the status quo point (x*, y*), we maximise the product (x-x*)(y-y*) over the convex polygon using KTC non-linear optimisation techniques. The results give additional insights into game theory analysis.

Online publication date: Tue, 06-Jul-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Analysis Techniques and Strategies (IJDATS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com