A study of the impact of long range interactions on the reactivity of N + N2 using the Grid Empowered Molecular Simulator GEMS
by Sergio Rampino, Fernando Pirani, Ernesto Garcia, Antonio Lagana
International Journal of Web and Grid Services (IJWGS), Vol. 6, No. 2, 2010

Abstract: The Potential Energy Surface (PES) of the N + N2 atom diatom system has been reformulated using the Largest Angle Generalisation of the Rotating Bond Order (LAGROBO) functional form for interpolating ab initio points in the short distance region and using a modified Lennard-Jones functional form to model the van der Waals interaction at long range. On the proposed surface extended quantum calculations have been performed using the Dynamics module of the Grid Empowered Molecular Simulator (GEMS) on the European Grid platform. The values of the calculated thermal rate coefficients fairly well reproduce the experimental results.

Online publication date: Wed, 30-Jun-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Web and Grid Services (IJWGS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com