The effect of surrounding temperature on liquefied petroleum gas behaviour during exhaustion process
by Zainal Zakaria, Azeman Mustafa
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 3, No. 2, 2010

Abstract: Liquefied petroleum gas (LPG) is considered to be a cleaner fuel because it has less impact on air quality. However, the potential benefit of LPG usage in domestic or residential sectors in Malaysia is hampered by LPG residue in cylinder. A few critical factors, such as LPG composition, exhaustion rate and surrounding temperature, have been identified to significantly contribute to the LPG residue problem. The present study will only report the effect of surrounding temperature on the behaviour of LPG inside the storage cylinder during exhaustion process. The investigation was experimentally carried out at the surrounding temperature of 10°C to 35°C. The results show that LPG exhaustion operation at the surrounding temperature of 25°C or higher exhibited significant temperature and pressure profiles which explained a considerable reduction of the LPG residue. Radial and axial thermal distribution analysis inside the cylinder indicates that sensible heat needed for evaporation process was derived mainly in the axial direction at the regions adjacent to the internal wall. [Received: January 28, 2009; Accepted: December 8, 2009]

Online publication date: Fri, 04-Jun-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com