General features and validation of the recent KARATE-440 code system
by A. Kereszturi, Gy. Hegyi, L. Korpas, Cs. Maraczy, M. Makai, M. Telbisz
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 5, No. 3, 2010

Abstract: In the last few years several projects aiming at the introduction of new VVER-440 fuel types and resulting in more economic fuel cycles were initiated: increased average enrichment, modification of the lattice pitch and fuel diameter, profiled enrichment, application of burnable absorber, modification of the absorber assembly coupler part. The first version of the KARATE-440 code system was elaborated in the KFKI Atomic Energy Research Institute (KFKI-AEKI) in the mid-1990s for the core design calculations of VVER-440 type reactors. The above fuel modifications and the upgraded regimes requiring more accurate calculations have necessitated the further development and validation of the code system. Owing to the new fuel types (e.g., burnable poison), greater attention has had to be paid also to the spectral calculations of the assemblies, especially to the space-dependent thermalisation in a large heterogeneous system. The fast algorithm applied to solve this problem with satisfactory accuracy is also detailed. The first part of the paper outlines the general features of KARATE, while in the next part the validation results are presented in relation to zero reactor measurements, mathematical benchmark problems and the operational data of the Paks (Hungary) Nuclear Power Plant (NPP).

Online publication date: Wed, 02-Jun-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com