Frequency and current effects in a MR damper
by Jorge de-J. Lozoya-Santos, Ruben Morales-Menendez, Ricardo A. Ramirez-Mendoza, Elvira Nino-Juarez
International Journal of Vehicle Autonomous Systems (IJVAS), Vol. 7, No. 3/4, 2009

Abstract: This paper deals with Magneto-Rheological (MR) damper modelling and identification. The effect of the frequency and current is analysed through a database of four experimental datasets with different displacement and current. The benchmarking of modified models of a literature model approach is done. It is clarified the linearity of the current with the maximum damping force and its effect on the hysteresis; and if the displacement and current have persistent magnitude variation, the model parameters can be frequency independent. A resultant model based on these findings has realistic behaviour with a simple structure, two non common model features for this device.

Online publication date: Fri, 14-May-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Autonomous Systems (IJVAS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com