Numerical simulation of fluid flow and heat transfer in a passage with moving boundary
by D. S. Zhang, Q. W. Wang, W. Q. Tao
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 2, No. 2/3/4, 2002

Abstract: In this paper, a method is presented in detail that can be used to solve the fluid flow and heat transfer in domains with moving boundaries. The primitive variables formulation is adopted and a non-staggered grid, with Cartesian velocity components used as the primary unkowns in the momentum equations, is utilised. Discretisation is carried out using a control-volume method, the simplified QUICK scheme combined with a deferred correction approach is adopted for the convective fluxes and implicit time stepping is used for temporal differencing. The well-known SIMPLE algorithm is employed for handling the velocity–pressure coupling. The computational method is applied for the prediction of fluid flow and heat transfer in a channel with a boundary moving in a prescribed manner. Results show that both the amplitude and Strouhal number have great influences on the characteristics of fluid flow and heat transfer, and in the range studied, the heat transfer rate increases monotonously with the amplitude, whereas the Strouhal number only has a small effect on heat transfer.

Online publication date: Tue, 19-Aug-2003

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com