Molecular nanomagnets: towards molecular spintronics
by Wolfgang Wernsdorfer
International Journal of Nanotechnology (IJNT), Vol. 7, No. 4/5/6/7/8, 2010

Abstract: Molecular nanomagnets, often called single-molecule magnets, have attracted much interest in recent years both from experimental and theoretical point of view. These systems are organometallic clusters characterised by a large spin ground state with a predominant uniaxial anisotropy. The quantum nature of these systems makes them very appealing for phenomena occurring on the mesoscopic scale, i.e., at the boundary between classical and quantum physics. Below their blocking temperature, they exhibit magnetisation hysteresis, the classical macroscale property of a magnet, as well as quantum tunnelling of magnetisation and quantum phase interference, the properties of a microscale entity. Quantum effects are advantageous for some potential applications of single-molecule magnets, e.g., in providing the quantum superposition of states for quantum computing, but are a disadvantage in others such as information storage. It is believed that single-molecule magnets have a potential for quantum computation, in particular because they are extremely small and almost identical, allowing to obtain, in a single measurement, statistical averages of a larger number of qubits. This review introduces some basic concepts that are needed to understand the quantum phenomena observed in molecular nanomagnets and discusses new trends of the field of molecular nanomagnets towards molecular spintronics.

Online publication date: Sun, 21-Feb-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com