Structure-preserving dynamical model and distributed stabilisation of electricity infrastructures with renewable energy resources
by Le Xie, Marija D. Ilic
International Journal of Critical Infrastructures (IJCIS), Vol. 6, No. 2, 2010

Abstract: This paper introduces a module-based approach to modelling and controlling electricity infrastructure with a high penetration of distributed renewable energy resources. Each energy-converting component is defined as a module and is represented in terms of its local variables and the interaction variables between the module and the transmission network. The structure of the electricity infrastructure is preserved in the proposed dynamical model. Therefore, it is possible to specify the performance subobjectives of each module for a given range of variations in interaction variables and to ensure that the local subobjectives are met through multidirectional distributed sensing and actuation. This approach provides a systematic means of analysing the infrastructure dynamics with increasing penetration of distributed renewable energy resources such as wind and solar. Sufficient conditions on modules and network specifications are derived under which the system-wide dynamics are stabilised. Based on these conditions, an interactive communication protocol between the modules and system operator could be implemented for distributed stabilisation. An IEEE 14 bus system is used to illustrate the concepts put forward.

Online publication date: Wed, 20-Jan-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Critical Infrastructures (IJCIS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com