Quantitative detection of bubble dynamics by Doppler ultrasound
by Yufeng Zhou
International Journal of Functional Informatics and Personalised Medicine (IJFIPM), Vol. 2, No. 4, 2009

Abstract: Bubble cavitation is one of the major mechanisms for ultrasound-induced bioeffects. Characterising the bubble dynamics, expansion and collapse is of importance in understanding the cavitation phenomenon and estimating the consequent outcome. In this study, Doppler ultrasound method was firstly used to measure the bubble wall velocity. Bubbles were generated in water using a beam of high-intensity focused laser light or inside a vessel phantom using a shock wave generator. Agreement was found between the determination by high-speed photographs and Doppler method. Overall, it is suggested that Doppler ultrasound could be a noninvasive method of quantitatively detecting bubble dynamics in vivo.

Online publication date: Fri, 08-Jan-2010

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Functional Informatics and Personalised Medicine (IJFIPM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com