Dynamic behaviour of regular closed-cell porous metals – computational study
by Matej Vesenjak, Zoran Ren, Andreas Ochsner
International Journal of Materials Engineering Innovation (IJMATEI), Vol. 1, No. 2, 2009

Abstract: The paper describes computational modelling of regular closed-cell cellular materials behaviour when subjected to impact loading conditions. Parametric computational simulations have been carried out to evaluate influences of the relative density, strain rate, pore gas and gas type on the macroscopic dynamic behaviour of cellular materials. The behaviour of the model under uniaxial impact loading conditions and large deformations has been analysed with the LS-DYNA code, which is based on the finite element method. This study helps to clarify which effects are indeed important and would have to be considered in developing new homogenised constitutive relationships for analysing impact problems with use of general computational codes. Additionally, the detailed computational models provide an insight into behaviour of cellular material accounting for pore filler and basic constitutive relations for further development of homogenised models under impact conditions and large deformations. Furthermore, they allow for determination of most appropriate geometrical and material parameters of cellular materials in regard to individual engineering application demands.

Online publication date: Mon, 23-Nov-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials Engineering Innovation (IJMATEI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com