Adaptive aggregation method for the Chemical Master Equation
by Jingwei Zhang, Layne T. Watson, Yang Cao
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 2, No. 2, 2009

Abstract: One important aspect of biological systems such as gene regulatory networks and protein-protein interaction networks is the stochastic nature of interactions between chemical species. Such stochastic behaviour can be accurately modelled by the Chemical Master Equation (CME). However, the CME usually imposes intensive computational requirements when used to characterise molecular biological systems. The major challenge comes from the curse of dimensionality, which has been tackled by a few research papers. The essential goal is to aggregate the system efficiently with limited approximation errors. This paper presents an adaptive way to implement the aggregation process using information collected from Monte Carlo simulations. Numerical results show the effectiveness of the proposed algorithm.

Online publication date: Sat, 03-Oct-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com