Modification of surface and catalytic properties of Cu nanostructure catalysts used in methanol synthesis and steam reforming
by Mohamed Mokhtar, Sulaiman Basahel, Shaeel Al Thabaiti
International Journal of Nanoparticles (IJNP), Vol. 2, No. 1/2/3/4/5/6, 2009

Abstract: A series of CuO/ZnO/Al2O3 nanocrystalline solid catalysts were prepared by the coprecipitation method at constant temperature. The effect of the change in pH, chemical composition and thermal treatment for all the prepared solids on the physicochemical, surface and catalytic properties was investigated. The crystal structure of the different prepared solids was studied using XRD analysis. The crystallite size calculated from XRD patterns using Scherer equation did not alter effectively by changing the pH of the prepared catalyst precursors. The surface characteristics of various calcined adsorbents were investigated using nitrogen adsorption at –196°C and their catalytic activities were determined using water-gas shift reaction (WGSR) at temperature range between 130°C and 300°C. Only CuO and ZnO were identified for the solids calcined at 350°C. The catalyst with Cu/Zn = 1 and prepared at pH = 7 showed the smallest crystallite size (20 nm) and biggest surface area (SBET = 98m2/g). During the catalytic test relatively high conversion of CO into CO2 at a temperature = 150°C was observed (96%) for the previous catalyst.

Online publication date: Wed, 30-Sep-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanoparticles (IJNP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com