Fabrication of two-dimensional photonic crystals in a chalcogenide glass
by Raul J. Martin-Palma, Trevor E. Clark, Carlo G. Pantano
International Journal of Nanotechnology (IJNT), Vol. 6, No. 12, 2009

Abstract: Two-dimensional photonic band gap structures consisting of air holes arranged to form a hexagonal lattice were patterned into chalcogenide glass thin films by Focused Ion Beam (FIB) milling. The dimensional parameters for these structures, namely type of lattice, lattice parameter and radius of the holes, were chosen so as to show a photonic band gap relevant to the infrared range, aiming at their subsequent use in the field of chemical sensing and biosensing. The optical behaviour of these structures was determined by calculating the band structure for the TM (magnetic field in-plane) and TE (electric field in-plane) modes. Furthermore, FIB milling was used to fabricate input and output waveguides coupled to the photonic crystals. The transmission spectra of the resulting structures for the TE and TM modes with two different orientations were also calculated.

Online publication date: Thu, 17-Sep-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com