Multi-objective optimisation approach for predicting seated posture considering balance
by Joo H. Kim, Jingzhou (James) Yang, Karim Abdel-Malek
International Journal of Vehicle Design (IJVD), Vol. 51, No. 3/4, 2009

Abstract: Common tasks of vehicle operation are performed while seated. Using a whole-body human articulated model, we propose a methodology of predicting realistic seated postures that is based on optimising multiple-objective functions. The idea of zero-moment point (ZMP), inspired from the stability of bipedal motion, is applied to the seated postures as the main criterion for stability. An efficient formulation of ZMP is derived from the resultant reaction loads, which are also necessary to predict seat reaction forces. The required joint actuator torques is calculated and is within the limits. Several seated posture examples with different tasks (external forces and target points) show associated natural postures with different stability levels.

Online publication date: Sat, 22-Aug-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com