A promising approach to safe, proliferation resistant production of nuclear power
by Terry Kammash
Atoms for Peace: an International Journal (AFP), Vol. 2, No. 4, 2009

Abstract: With the world population reaching about 10 billion by mid-century, the requirement for carbon-free energy (estimated at 30 terawatts) to meet global needs will indeed be daunting. A sizable portion of this power is expected to come from nuclear sources fuelled by fission and/or fusion breeding. Although a great international effort is currently underway aimed at producing pure fusion power, the fact remains that such reactors will initially be characterised by a rather modest gain factor, 'Q' (the ratio of fusion power to injected power), putting in question their economic viability and potential impact on the energy crisis. It is well known, nevertheless, that fusion reactions are neutron rich and energy poor, while fission reactions are energy rich but neutron poor. As a result, it has occurred to many researchers over the past several decades that a fusion hybrid in which fusion neutrons are used to breed fissile material, thereby serving as a 'fusion fuel factory', might very well address the impending energy shortage. In this paper, we take a somewhat different approach. We propose a system in which the fusion neutrons from a fusion reactor operating at Q-value slightly larger than unity are used to drive an energy-producing blanket in which uranium-233 fissile material is bred from thorium-232 and simultaneously burned to produce energy. It will be a steady-state operating system with no criticality invoked, thus providing a measure of safety as well as potential elimination of proliferation hazards.

Online publication date: Thu, 13-Aug-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Atoms for Peace: an International Journal (AFP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com