Numerical and experimental analysis of the tool edge radius effect in micromachining of ferrous materials
by Keng-Soon Woon, Mustafizur Rahman, Kui Liu
International Journal of Nanomanufacturing (IJNM), Vol. 3, No. 3, 2009

Abstract: The tool edge radius effect in micromachining of ferrous materials was investigated extensively using advanced numerical and experimental approaches. The results revealed that the best surface finishing could be obtained at a critical combination of undeformed chip thickness and tool edge radius where material is removed through severe plastic deformation associated with an effective negative rake angle. The chip formation exhibits an extrusion-like behaviour as driven by intense deviatoric and hydrostatic stresses that are highly localised around the deformation zone. The changes in the chip formation behaviour over the range of a/r = 0.05-2.0 are indicated by four stages of machining force distributions. It is worth noting that the tool edge radius effect has a great influence on material deformations and contact interaction in tool-based micromachining. Thus, an analytical contact length model for tool-based micromachining is proposed.

Online publication date: Wed, 22-Jul-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com