Designing hardware for finite synchronous state machines using quantum inspired evolution
by Marcos Paulo Mello Araujo, Nadia Nedjah, Luiza De Macedo Mourelle
International Journal of Innovative Computing and Applications (IJICA), Vol. 1, No. 4, 2008

Abstract: Synchronous finite state machines are very important for digital sequential systems. Among other important aspects, they represent a powerful way for synchronising hardware components so that these components may cooperate adequately in the fulfilment of the main objective. In this paper, we propose to use an evolutionary methodology inspired from quantum computation to yield a concise and efficient evolvable hardware that implements the state machine control logic. The evolved circuits are promising.

Online publication date: Sat, 11-Jul-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Innovative Computing and Applications (IJICA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com