Investigations on the adjustment of the modelling section in 2D simulations of milling processes
by E. Uhlmann, A. Mattes, M. Graf von der Schulenburg, Robert Gerstenberger
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 6, No. 1/2, 2009

Abstract: Conducting 3D simulation of milling processes still causes high efforts. There, only small workpiece sections can be modelled so far, instead of the entire contact width. Approaches using 2D simulation pose an interesting alternative. Here, the two-dimensional perspective is gained by dividing the workpiece into different sections perpendicular to the feed rate. This, however, requires a modelling approach that covers arbitrary contact widths along with a high mesh density in the area of chip formation. Automatically adjusting the modelling section hereby helps to model contact width up to 180° by segmentally simulating the rotation of the milling cutter. This paper presents the investigations on the effect of the most important parameters which influence sufficiently accurate computation of the equivalent cutting forces as in conventional 2D simulation models using the software DEFORM 2D.

Online publication date: Thu, 09-Jul-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com