Tracking multiple interacting subcellular structure by sequential Monte Carlo method
by Quan Wen, Kate Luby-Phelps, Jean Gao
International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 3, No. 3, 2009

Abstract: With the wide application of Green Fluorescent Proteins (GFP) in the study of live cells, there is a surging need for computer-aided analysis on the huge amount of image sequence data acquired by the advanced microscopy devices. In this paper, a framework based on Sequential Monte Carlo (SMC) is proposed for multiple interacting object tracking. The distribution of the dimension varying joint state is sampled efficiently by a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm with a novel height swap move. Experimental results were performed on synthetic and real confocal microscopy image sequences.

Online publication date: Tue, 23-Jun-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Data Mining and Bioinformatics (IJDMB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com