Total scatter-to-backscatter ratio of aerosol derived from aerosol size distribution measurement
by Wei-Nai Chen, Shih-Yu Chang, Charles C-K. Chou, Guor-Cheng Fang
International Journal of Environment and Pollution (IJEP), Vol. 37, No. 1, 2009

Abstract: Based on in-situ aerosol size-distribution measurements and Mie scattering theory, total scattering coefficients and backscattering coefficients were calculated to derived wavelength dependent lidar ratio S for 355 nm and 532 nm. Effective radius and C/F ratio of aerosol are also calculated to study the relationships between lidar ratio and particle size dependences. The results show backscatter-related scattering properties are more sensitive to coarse mode particle than total scattering. The mean values of lidar ratio for 355 nm and 532 nm are 31.9 ± 6.2 sr and 40.5 ± 6.1 sr respectively, and S355 and S532 are linear correlated for S355 < 50 sr. S355 is highly correlated with effective radius of aerosol, and S532 is highly correlated with volume C/F ratio.

Online publication date: Mon, 06-Apr-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com