Resilience to churn of a peer-to-peer evolutionary algorithm
by J.L.J. Laredo, P.A. Castillo, A.M. Mora, J.J. Merelo, C. Fernandes
International Journal of High Performance Systems Architecture (IJHPSA), Vol. 1, No. 4, 2008

Abstract: In this paper we analyse the resilience of a peer-to-peer (P2P) evolutionary algorithm (EA) subject to the following dynamics: computing nodes acting as peers leave the system independently from each other causing a collective effect known as churn. Since the P2P EA has been designed to tackle large instances of computationally expensive problems, we will assess its behaviour under these conditions, by performing a scalability analysis in five different scenarios using the massively multimodal deceptive problem as a benchmark. In all cases, the P2P EA reaches the success criterion without a penalty on the runtime. We show that the key to the algorithm resilience is to ensure enough peers at the beginning of the experiment; even if some of them leave, those that remain contain enough information to guarantee a reliable convergence.

Online publication date: Sun, 29-Mar-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Systems Architecture (IJHPSA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com