CFD modelling of electrohydrodynamic gas flow in an electrostatic precipitator
by Seong Cheon Kim, Young Nam Chun
International Journal of Environment and Pollution (IJEP), Vol. 36, No. 4, 2009

Abstract: Modelling of the flow velocity fields for electrohydrodynamic flow in a wire-to-plate type electrostatic precipitator was achieved. From calculations for the flow employing different flow models, the Chen-Kim k − ε turbulent model appeared to be the most appropriate choice to obtain a quantitative image of the resulting mean flow field and downstream wake flow of the rear wire, although this was obtained from a qualitative analysis owing to the lack of experimental verification. The flow velocity field pattern showed a strong electrohydrodynamic secondary flow, which was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode (ReCW = 12.4). Secondary flow vortices were also caused by the electrohydrodynamic with increases in the discharge current. Pressure drop increased gradually according to the increase of the electrohydrodynamic number.

Online publication date: Sat, 07-Mar-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com