Endoreversible thermodynamics approach for optimum oven operation
by Viorel Badescu
International Journal of Exergy (IJEX), Vol. 6, No. 1, 2009

Abstract: This paper refers to the problem of how much heat is necessary for oven operation. An endoreversible thermodynamics approach is used here. More accurate upper bounds for the oven heat gain factor are obtained than when the traditional reversible thermodynamics approach is used. The optimum operation temperatures and the oven heat gain factor depend on three parameters incorporating both design and thermal factors. The quantities associated with reversible operations are recovered in the limiting case of infinitely large conductance. In the more realistic case of finite sizes one shows that the equipartition principle acts for the conductances of the heat engines and heat pumps driving the endoreversible oven, but does not act at the level of the system. The results show that reducing the present day fuel consumption by an order of magnitude for oven operation is, in principle, possible.

Online publication date: Thu, 19-Feb-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com