An efficient trajectory planning approach for autonomous robots in complex bridge environments
by Wing Keung To, Gavin Paul, Ngai Ming Kwok, Dikai Liu
International Journal of Computer Aided Engineering and Technology (IJCAET), Vol. 1, No. 2, 2009

Abstract: This paper presents an efficient trajectory planning approach for a 6DOF robotic manipulator conducting grit-blasting in complex bridge structural environments. The proposed approach extends upon robotic grit-blasting planning and incorporates joint movement minimisation in addition to path length minimisation. A genetic algorithm is implemented to optimise initial path plans based on a heuristic pattern for the coverage of surface areas to be blasted. A customised gradient based method is applied for the generation of collision-free joint configurations for grit-blasting based on the identified path plan. A grit-blasting coverage model is developed for discrete non-planar 3D coverage determination to verify the performance of the plan. Extensive simulation and experimental results are also presented in this paper.

Online publication date: Mon, 26-Jan-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Aided Engineering and Technology (IJCAET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com