Discrete element modelling of missile impacts on a reinforced concrete target
by Wenjie Shiu, Frederic Victor Donze, Laurent Daudeville
International Journal of Computer Applications in Technology (IJCAT), Vol. 34, No. 1, 2009

Abstract: A three-dimensional Discrete Element Method (DEM) is used to study the penetration and perforation process of a concrete target subjected to rigid flat-nose-shaped missile impacts. The evolution of the missile velocity is compared with real test cases made by the French Atomic Energy Agency (CEA) and the French Electrical Power Company (EDF). The perforation limits observed in the experimental data are well predicted by the three-dimensional discrete element model. Parametric studies are then carried out to show the respective roles of the mechanical components, such as the dependence of the perforation process on the percentage of reinforcement.

Online publication date: Sun, 25-Jan-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com