A general framework for lumbar spine modelling and simulation
by Ayman H. Kassem, Ahmed Sameh
International Journal of Human Factors Modelling and Simulation (IJHFMS), Vol. 1, No. 2, 2008

Abstract: A general framework for modelling and simulation of the dynamic, three-dimensional motion response of the human lumbar-spine is presented in this paper. Lumbar vertebrae are modelled as rigid bodies and all other Flexible Joint Structures (FJS) (i.e., ligaments, cartilage, muscles, and tendons) are modelled collectively as massless springs and dampers. Coupling coefficients, providing additional constraints, are incorporated into the model. Unknown model coefficients (nominally spring, damping and coupling coefficients) are automatically determined by systematically matching the model predictions to spine forced displacement-time data. A robust parameter optimisation module (Monte Carlo routine and Genetic Algorithm (GA)) was developed for this purpose. Two test cases were included for parameters estimation and model verification.

Online publication date: Thu, 08-Jan-2009

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Human Factors Modelling and Simulation (IJHFMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com