An adaptive manoeuvring strategy for mobile robots in cluttered dynamic environments
by Jaime Valls Miro, Tarek Taha, Dalong Wang, Gamini Dissanayake
International Journal of Automation and Control (IJAAC), Vol. 2, No. 2/3, 2008

Abstract: A novel method which combines an optimised global path planner with a real-time sensor-based collision avoidance mechanism to accommodate for dynamic changes in the environment (e.g., people) is presented. The basic concept is to generate a continually changing parameterised family of virtual force fields for the robot based on characteristics such as location, travelling speed and dimension of the objects in the vicinity, static and dynamic. The interactions among the repulsive forces associated with the various obstacles provide a natural way for local collision avoidance in a partially known cluttered environment. This is harnessed by locally modifying the planned behaviour of the moving platform in real-time, whilst preserving the optimised nature of the global path. Furthermore, path traversability is continually monitored by the global planner to trigger a complete path re-planning from the current location in case of major changes, most notably when the path is completely blocked by obstacles.

Online publication date: Mon, 22-Dec-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com