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Abstract: In this paper an Agent-Based Model (ABM) to study Normal Human 
Keratinocytes (NHK) (tissue cells) is investigated. ABM are widely used for 
the simulation of systems from several domains (biology, economics, 
meteorology, etc.). In biology, ABM are useful for predicting the social 
behaviour of systems; in particular, they seem well adapted to model the 
behaviour of a cell population. These models exhibit probabilistic behaviour 
and the validation of simulation results is often a qualitative analysis by experts 
(biologists). The aim of this paper is to propose new variables and metrics for 
the development of quantitative methods to validate the model. 
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1 Introduction 

A computational model has been developed in the Epitheliome project 
(http://www.epitheliome.com) based on biological rules that govern the self-organisation 
of Normal Human Keratinocytes (NHK) (Sun et al., 2007). This is the result of the 
combination of in-vitro and in-virtuo models used to explore the behaviour of NHK.  
The model helps to predict the dynamic multi-cellular morphogenesis of NHK and of a 
keratinocyte cell line (HaCat cells) under varying extra-cellular Ca++ concentrations.  
The use of this approach to model NHK and HaCat provides a description of the effects 
of extra-cellular calcium on NHK proliferation and differentiation and provides a 
simulation of the colony formation of keratinocytes. The aim of this study was to further 
develop the model to explore how NHKs self-organise into an epithelium, particularly 
how they form colonies. 

To date, the quantitative validation of this in-virtuo model has been confined to a 
comparison of real and simulated growth rates (using the total number of cells in  
the dish). Cell division and migration are stochastic processes, so the dynamical response 
of the in-vitro and in-virtuo models would not be expected to yield identical outcomes 
after a period of growth under identical conditions. Nevertheless, it is reasonable to 
assume strong similarity and suitable metrics to compare in-vitro and in-virtuo  
results need to be developed. The main objective of this work is to contribute to the 
development of these metrics. The aim is to define new variables with spatio-temporal 
information of the cell population in order to make a quantitative comparison of the 



   

 

   

   
 

   

   

 

   

    Development of spatiotemporal validation methods 337    
 

    
 
 

   

   
 

   

   

 

   

       
 

dynamical results of the models. Using a new approach based on a circular grid, this 
spatio-temporal analysis will allow the measurement (and comparison) of new variables 
associated with cell division, migration and apoptosis giving dynamical information 
about the growth rates in different regions of the dish.  

This paper is organised as follows: Section 2 gives a description of the agent-based 
model to be analysed. Section 3 and Section 4 introduce the circular approach for the 
spatiotemporal analysis and the new variables to be used. Section 5 shows an example 
where the circular approach is used to compare two simulations. Section 6 shows the 
application of Monte-Carlo Simulations to evaluate the dynamical responses of the new 
variables and, finally, Section 7 shows the conclusions of this work. 

2 Description of the model 

Normal Human Keratinocytes constitute over 80% of the cells in the inter-follicular 
epidermis. These cells are shed at the skin surface and are replaced by the division  
in the basal layers of the epidermis, known as the germinative compartment  
(Webb et al., 2004). Cells in the basal layer are heterogeneous in type and have a 
hierarchical population structure (Webb et al., 2004). They are pushed up through the 
layers of the epidermis, undergoing gradual differentiation until they reach the stratum 
corneum where they form a layer of enucleated, flattened, highly keratinised cells  
called squamous cells. This layer forms an effective barrier to the entry of foreign matter 
and infectious agents into the body and minimises moisture loss. Figure 1 shows different 
layers in human epidermis. 

The model enables in-virtuo exploration of the relative importance of biological rules 
and was used to test hypotheses in-virtuo which were subsequently examined in-vitro. 

Figure 1 Human epidermis (see online version for colours) 

 

Each individual cell is represented in the computational model by a software agent.  
In this particular model, the software agents are a form of communicating X-machine 
(Balanescu et al., 1999; Kefalas et al., 2003). Each agent has a rule set, based  
on experimental cell biology, which determines the behaviour of the agent and its 
interaction with its neighbours. The interaction of a set of agents (which are equivalent to 
a cell population) can be used to model the organisation of multi-cellular aggregates 
(Walker et al., 2004; Grabe and Neuber, 2005; Sun et al., 2007).  
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Each cell is modelled as a non-deformable sphere of 20 µm in diameter. Cells are 
capable of migration, proliferation and differentiation. The culture is modelled as a flat, 
square surface with ‘walls’ and the dimensions are user-defined. For the purpose of the 
experiments, the basement was 500 µm in each dimension with a wall height of 100 µm. 
The exogenous calcium level was set to 1.3 mM (physiological calcium level) but the 
model can be used for different calcium levels (i.e., 0.1 mM for the study of the system 
with a low calcium level). 

Results obtained from the model include the type of cell (stem, Transit-Amplifying 
(TA), committed or corneocyte) and their location (Figure 2 shows some snapshots of 
simulations). Each cell then performs specific rules associated with the cell cycle. 
Following this, cells decide whether to change to another cell type based on the 
differentiation rules in the model. Cells then execute their migration rules, and finally 
execute physical rules. All rules are executed in the context of the agent’s own internal 
state and the states of the other cells around it. 

Figure 2 Snapshots of simulations of the agent-based model (see online version for colours) 

 

The computational model allows the user to access several variables associated  
with each cell in the dish (position, type, number of intercellular bonds, etc.) for each 
iteration k. Mean cell cycle time and migration rate are scaled so that each time step in 
the model represents approximately 30 min in real time. For the purpose of this paper, the 
dynamical response of the spatial location of each cell was the main variable. 

3 Spatiotemporal analysis 

3.1 Why a spatiotemporal analysis and the development of validation methods? 

A great amount of data can be extracted from individual agents in the simulations.  
Some global variables (i.e., the total number of cells in the dish, the total number of cell 
divisions, etc.) are accessible to the user for comparison with experimental data. 
However, there are some random processes associated with each individual generating  
a spatial probabilistic behaviour in the entire cell population.  

Classical quantitative analysis could generate different spatial results for similar 
behaviours. For example, when a simulation is performed, the first observations that  
are available to the user are that individual cells can move in any direction from time  
k to time k + 1 (Figure 3). 
 
 



   

 

   

   
 

   

   

 

   

    Development of spatiotemporal validation methods 339    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 Possible scenarios for iteration k + 1 (see online version for colours) 

 

This kind of reaction generates a stochastic behaviour for the entire cell population. 
The analysis of the development of spatial distribution in stochastic processes  

where both type and position of the objects is involved has not been extensively 
developed in the literature. This kind of study is an important and necessary procedure 
for the validation of these models. The spatiotemporal analysis is particularly relevant to 
the understanding of the development of properly structured and functional tissue in 
multi-cellular organisms. 

Figure 3 shows that the same migration behaviour could be considered as different for 
several experiments if a classic spatial analysis (i.e., discretising the dish with a 2D 
square grid) is used to study the spatial distribution of the cells. A cell can migrate to any 
case around its original location; thus, if a square grid is used, an occupied case in a given 
experiment could be empty in another experiment. 

The aim of this work is to propose the calculation of new variables in order  
to develop methods to quantify similar spatio-temporal behaviours. In particular, these 
new variables will be useful to determine if two simulations are ‘equal’ or to verify if  
the model is ‘right’ (i.e., the dynamical response of the model is similar to the 
experimental data). 

The ultimate goal of this approach is the development of validation methods to 
compare the simulation results with experimental data, possibly developing some 
approaches using correlation function tests. 

3.2 Selection of a grid for a quantitative analysis 

As noted above, a square grid could generate different results for the same  
spatio-temporal behaviour. 

Because of this effect, a circular approach, based on concentric circles around the 
centre of the dish (x = 250, y = 250) will be introduced. In this particular analysis,  
12 circles with a radius variation of 30 µm were employed (Figure 4). 

Once the grid is defined, the objective is to calculate several variables associated with 
the spatial behaviour of the cell population. The calculation of these variables is made in 
each ring of the circular grid. 
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Figure 4 (a) Initial location of cells and (b) circular grid (see online version for colours) 

 
 (a) (b) 

4 Defining quantitative variables for comparison 

The first variable to be calculated is the number of cells in each ring of the grid.  
This will give information about the spatial distribution of the cells. Two variables were 
selected to evaluate the migration of cells: positive migration and negative migration. 
Positive migration is the number of cells entering the ring and negative migration 
represents the number of cells leaving the ring. The mitosis rate is calculated as the 
number of cells in the ring because of the division of cells. Finally, apoptosis is 
calculated as the number of cells dying in the ring at each iteration. These effects will be 
discussed in more detail in the following sections. 

4.1 Comparing the spatial distribution of cells 

The spatial distribution can be evaluated as the variation of the total number of cells in 
each ring. With this objective in mind a vector with n rows (n = number of radii used in 
the circular grid) is built for each iteration k: 

1 (1)

.

( )

k

k

n k

R NCell

NCell

R NCell n

 
 
 
 =
 
 
  

 (1) 

4.2 Comparing migration 

The criterion to evaluate the migration of cells involves observations of the number of 
cells that move from ring ‘j’ to ring ‘i’. This behaviour can be achieved by filling a 
square matrix where each row and column corresponds to each ring. 
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(1,1)      (1, )  

.

( ,1) ( , )

n

k k

k

n k k

R R
R Mig Mig n

Mig

R Mig n Mig n n

 
 
 
 =
 
 
  

 (2) 

The element (i, j) of the Migk matrix for each iteration corresponds to the number  
of cells that migrate from ring ‘i’ to ring ‘j’. Obviously the element (i, i) is the number of 
cells that remain in the ring ‘i’. In general, there will be a transfer of cells from/to ring ‘i’ 
to/from ring ‘i + 1’ and ‘i – 1’, which means that a tri-diagonal matrix is obtained at each 
iteration. 

To calculate the total number of cells at time ‘k’ in ring ‘i’, a simple equation based 
on migration (from and to ring ‘i’) and mitosis can be used. 

1 1 1 1
i i i i i
k k k k kC C Min Mout Mit− − − −= + − +  (3) 

where i
kC  is the total number of cells in ring ‘i’ at time k, 1

i
kC −  is the total number of 

cells in ring ‘i’ at time k – 1, 1
i
kMin −  is the number of cells that migrated from other rings 

to ring ‘i’, 1
i
kMout −  is the number of cells that migrated from ring ‘i’ to other rings and 

1
i
kMit −  is the number of new cells in ring ‘i’ because of mitosis. 
To compare migration the terms i

kMin  and i
kMout  for each ring ‘i’ can be evaluated. 

These terms are useful for calculating the ‘migratory’ flow of cells; the objective is  
to evaluate the variation of the number of cells in ring ‘i’ ( i

kC ) because of i
kMin  and 

.i
kMout  To illustrate this effect assume that the total number of cells in ring ‘i’ varies 

only because of the migration of cells from other rings,  

1 1.
i i i
k k kC C Min− −= +  (4) 

Alternatively the total number of cells varies only because of the migration of cells from 
ring ‘i’ to other rings, 

1 1.
i i i
k k kC C Mout− −= −  (5) 

Equations (4) and (5) can be used to compare the migration in each ring. The positive 
migration in ring ‘i’ ( )i

kPM  can then be defined as: 

1 1
i i i
k k kPM PM Min− −= +  (6) 

and the negative migration 1
i
kNM − as:  

1 1
i i i
k k kNM NM Mout− −= −  (7) 

The term 1
i
kMin − corresponds to the sum of the elements (i – 1, i) and (i – 1, i) of matrix 

1
i
kMig −  equation (8) and 1

i
kMout −  corresponds to the sum of elements (i, i + 1) and  

(i, i – 1) of matrix 1
i
kMig −  equation (9). 

 
 



   

 

   

   
 

   

   

 

   

   342 C. Pichardo-Almarza et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 ( 1, ) ( 1, )i
k k kMin Mig i i Mig i i− = + + −  (8) 

1 ( , 1) ( , 1).i
k k kMout Mig i i Mig i i− = + + −  (9) 

4.3 Comparing mitosis 

The same circular grid can also be used to evaluate the mitosis of cells in the dish  
(Figure 3(b)). Equation (3) can be used to calculate the term associated with mitosis 

1( ):i
kMit −  

1 1 1 1.
i i i i i
k k k k kMit C C Min Mout− − − −= − − +  (10) 

This will yield a vector for each iteration; thus, if there are ‘n’ radii, Mitk will have  
n components: 

1

.
k

k
n
k

M
Mit

M

 
 =  
  

 (11) 

Using a similar reasoning, a method to compare mitosis in each ring can be developed. 
This can be used to evaluate how the number of cells in ring ‘i’ ( )i

kC  increase because  
of mitosis occurring at time ‘k’. Assuming that the total number of cells in ring ‘i’ varies 
only because of mitosis in this ring, gives 

1 1.
i i i
k k kC C Mit− −= +  (12) 

Defining 1RMit i
k−  as the Mitosis rate in ring ‘i’, 

1 1
i i i
k k kRMit RMit Mit− −= +  (13) 

produces a variable which can be used to compare mitosis in different simulations. 

4.4 Comparing apoptosis 

The circular grid in this case is used to analyse apoptosis. The main idea is to evaluate the 
rate of cells dying in each ring of the grid. The calculation of the apoptosis rate uses a 
vector for each iteration, Apopk, with the number of cells dying in each ring: 

1

.
k

k
n
k

A
Apop

A

 
 =  
  

 (14) 

Using this vector a method to compare apoptosis in each ring can be developed. This can 
be used to evaluate how the number of dead cells in ring ‘i’ increases at time ‘k’.  

Defining 1
i
kRApop −  as the Apoptosis rate in ring ‘i’, 

1 1
i i i
k k kRApop RApop Apop− −= +  (15) 

produces a variable which can be used to compare apoptosis in different simulations. 
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4.5 Using statistics to compare results 

As a first approach, the main objective of this paper is to propose accessible techniques  
to allow a quantitative comparison between the results from two (or several) simulations 
of the agent-based model. The purpose is to try to extend these methods for the validation 
of results of the agent-based model with experimental results obtained from the in vitro 
model.  

Results from two simulations using the same parameters and initial conditions can be 
compared using classical statistical techniques, i.e., linear regressions, etc. Future work 
could include the use of specialised tools for the statistical analysis of circular data 
(Fisher, 1993; Jammalamadaka and SenGupta, 2001). 

With the variables proposed in this paper a dynamical evolution in time is obtained 
for the different radii of the grid; thus, classical statistics can be used to compare this 
dynamical response from two simulations. The method to calculate the variables and a 
statistical analysis to compare simulation results are illustrated in the following example. 

5 Example 

In this example a comparison between the dynamical responses of two simulations  
is shown. In this case both simulations use the same initial positions of cells and 
parameters (calcium levels, etc.). Simulations are generated using physiological  
calcium levels (1.3 mM) and eight initial cells in the dish with different spatial locations 
(Figure 3(a)). 

The spatial distribution, migration, mitosis and apoptosis are compared using the 
techniques proposed in sections above. 

5.1 Spatial distribution 

The vectors associated with the spatial distribution of cells from these two simulations 
(NCell) will be obtained. The main idea is to find this vector for each iteration  
by observing if the number of cells in each ring is similar in both simulations.  
For example, when the NCell vector is calculated for iteration 1000, the following results 
are obtained (Table 1): 

Table 1 Number of cells at iteration 1000 for both simulations 

Simulation 1 Simulation 2 

100

11
40
57
74
93

110
137
144
122
59
24
7

NCell

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
   

 

100

8
25
38
64

101
123
133
147
123
50
20
7

NCell

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
   
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To compare these vectors a linear regression can be applied, observing the number of 
cells in each ring. 

A regression factor (R) equal to 0.98 and a constant of the linear model (B; Y = BX) 
equal to 0.94 are obtained for this iteration.  

Calculating the NCell vector for each iteration and the linear correlation between  
the elements of both simulations, the obtained values of R and B are very close to 1. 
Figure 5 shows the temporal evolution of R and B. 

Figure 5 Spatial distribution: (a) correlation factor, R and (b) linear coefficient, B (see online 
version for colours) 

 
 (a) (b) 

5.2 Migration 

The migration of cells is evaluated using the circular grid of Figure 6. Calculating the 
migration matrix at iteration 1000, the results shown in Table 2 are obtained. 

As mentioned above, the elements on the diagonal of matrices Migk are the number of 
cells that remain (from iteration k – 1) in each ring. Thus, the evaluation of the positive 
migration is made by taking the elements of Migk in position (i + 1, i) and (i – 1, i) and 
the evaluation of the negative migration is made by taking the elements of Migk in 
position (i, i – 1) and (i, i + 1). 

1 ( 1, ) ( 1, )i
k k kMin Mig i i Mig i i− = + + −  (8) 

1 ( , 1) ( , 1).i
k k kMout Mig i i Mig i i− = + + −  (9) 

Figure 6 Circular grid: evaluating migration and mitosis (see online version for colours) 
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Table 2 Migration matrices at iteration 1000 for both simulations 

Simulation 1 Simulation 2 

1000

    2     0     0     0     0     0     0     0     0     0     0
0        1    0     0     0     0     0     0     0     0     0
0     1      0     0     0     0     0     0     0     

Mig =

10
 25

 40 0     0
0     0     2        6     0     0     0     0     0     0     0
0     0     0     1       4     0     0     0     0     0     0
0     0     0     0     4      8     0     0     0     0  

57
83 

108   0
0     0     0     0     0     5      4     0     0     0     0
0     0     0     0     0     0     6      6     0     0     0
0     0     0     0     0     0     0     3     3     0     0
0

135
132

119 
     0     0     0     0     0     0     0     5        1     0

0     0     0     0     0     0     0     0     0     1        0
0     0     0     0     0     0     0     0     0     0     0     





48
23

6


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

1000

    0     0     0     0     0     0     0     0     0     0     0
1       0     0     0     0     0     0    0     0     0     0
0     0       6     0     0     0     0     0     0     

Mig =

10
31 

42 0     0
0     0     2         3    0     0     0     0     0     0     0
0     0     0     4     10     0     0     0     0     0     0
0     0     0     0     3     1     0     0     0     0   

59
 83

102   0
0     0     0     0     0     5     3     0     0     0     0
0     0     0     0     0     0     3     3     0     0     0
0     0     0     0     0     0     0    3     2     0     0
0 

 126
131 

111 
    0     0     0     0     0     0     0     2       2     0

0     0     0     0     0     0     0    0     0     1      1
0     0     0     0     0     0     0    0     0     0     1     






35 
17  

4




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

For example, drawing the temporal evolution of the positive and the negative migration 
for rings 5 and 8, Figures 7 and 8 are obtained respectively. 

Figure 7 (a) Positive migration for ring 5 and (b) negative migration for ring 5 (see online 
version for colours) 

 
 (a) (b) 

Figure 8 (a) Positive migration for ring 8 and (b) negative migration for ring 8 (see online 
version for colours) 

 
(a) (b) 
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Figures 7 and 8 show that the dynamical responses of the positive and negative 
migrations for both simulations are very similar. The same procedure can be applied for 
all rings and a similar behaviour will be obtained. 

Tables 3 and 4 show the results of R and B of a linear regression between the results 
of both simulations: 

Table 3 Linear regression for positive migration 

Ring Correlation factor, R Linear factor, B (Y = BX) 
1 0.9897 0.7092 
2 0.9977 1.0022 
3 0.9963 1.1100 
4 0.9961 1.0967 
5 0.9961 1.0371 
6 0.9998 0.9932 
7 0.9988 1.0091 
8 0.9995 1.1061 
9 0.9990 1.2252 
10 0.9974 1.2326 
11 0.9984 1.0757 
12 0.9867 0.7637 

 

Table 4 Linear regression for negative migration 

Ring Correlation factor, R Linear factor, B (Y = BX) 
1 0.9880 0.6248 
2 0.9980 0.9864 
3 0.9938 1.0393 
4 0.9972 1.1836 
5 0.9990 0.9935 
6 0.9995 0.9687 
7 0.9994 1.0292 
8 0.9997 1.0768 
9 0.9996 1.2635 
10 0.9994 1.1855 
11 0.9966 1.1348 
12 0.9935 1.5598 

5.3 Mitosis 

In this case, the evaluation of mitosis in each ring is made using the circular grid of 
Figure 4(b) and equation (13). 

1 1 1.
i i i
k k kRMit C Mit− − −= +  (13) 
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With this equation the mitosis rate for both simulations is obtained. Figure 9 shows an 
example of the evolution of mitosis in time for rings 5 and 8. Similar results are obtained 
for the other radii. Table 5 shows the values of the linear correlation (R and B) between 
the migration results of both simulations. 

Figure 9 (a) Mitosis rate in ring 5 and (b) mitosis rate in ring 8 (see online version for colours) 

 
 (a) (b) 

Table 5 Linear regression for mitosis 

Ring Correlation factor, R Linear factor, B (Y = BX) 

1 0.9915 0.8282 
2 0.9969 0.92969 
3 0.9984 0.8656 
4 0.9991 1.1706 
5 0.9992 0.96496 
6 0.9997 1.0133 
7 0.9998 1.06 
8 0.98894 0.99933 
9 0.99962 1.1045 
10 0.9971 1.0419 
11 0.99441 1.1697 
12 0.92399 3.0375 

5.4 Apoptosis 

Finally, the apoptosis in each ring of the grid is evaluated by calculating the apoptosis 
rate (Section 2.4). Figure 10 shows the dynamical response of the apoptosis rate in  
rings 5 and 8 of the grid. Table 6 shows the values of the linear correlation between  
both simulations. 
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Figure 10 (a) Apoptosis rate in ring 5 and (b) apoptosis rate in ring 8 (see online version  
for colours) 

 
 (a) (b) 

Table 6 Linear regression for apoptosis 

Ring Correlation factor, R Linear factor, B (Y = BX) 
1 0.9386 0.9019 
2 0.9699 0.9146 
3 0.9793 1.0380 
4 0.9933 1.1037 
5 0.9981 0.9912 
6 0.9995 0.9348 
7 0.9972 0.9959 
8 0.9988 1.0594 
9 0.9975 1.0960 
10 0.9995 1.1324 
11 0.9926 1.0159 
12 0.8682 1.6757 

6 Monte-Carlo simulations 

Because of the probabilistic behaviour of the agent-based model used to simulate the 
behaviour of NHK, there is a possibility of obtaining different responses for two 
simulations (using the same set of parameters). A good method which allows the 
evaluation of the behaviour of a random process is Monte-Carlo Simulations. 

MonteCarlo (MC) methods are statistical simulation methods, using random numbers 
to give approximate solutions to mathematical problems. Developed by Neumann 
(Neumann, 1966), Ulam and Metropolis (Metropolis, 1987; Metropolis and Ulam, 1949) 
during World War Two, this method has been used to model a large variety of  
problems, from the estimation of pi (Mathews, 1972) to immune system simulations 
(Dasgupta, 1992; Mannion, 2002). 

In the particular case of this work, MC simulations are used to observe the behaviour 
of the agent-based model. The procedure consisted of running 100 simulations of the 
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model. For each simulation a set of random positions (x, y) with a normal distribution 
was generated. After each simulation a dynamic response of the variables defined to 
evaluate the spatial behaviour of cells (number of cells, positive and negative migration 
and mitosis) was obtained. Finally the results of the 100 simulation were analysed using 
statistical tools (Figure 11 shows a block diagram for the MC simulations). Because of 
the complexity of the model of the entire population and all the calculations related to 
individual cells, big computational power was needed for this analysis: a cluster of  
160 processors (2.4 GHz AMD Opteron) (http://www.shef.ac.uk/wrgrid/iceberg) was 
used to obtain simulation results in a reasonable time. 

Figure 11 Block diagram for the MC simulations (see online version for colours) 

 

6.1 Analysing the Monte-Carlo simulation results 

Classical statistics can be used to interpret the results of the Monte-Carlo simulations.  
The main idea is to calculate some statistical variables for the evaluation and testing  
of the model. In this paper, classical tools have been selected to evaluate the dynamic 
simulation results. The main objective of this statistical analysis is to determine whether 
similar behaviours are obtained for several simulations under similar conditions  
and parameter values. 

In this case, the mean value, standard deviation and confidence intervals were 
calculated for each iteration. After these calculations a ‘mean’ dynamical response is 
obtained for each variable with additional information about the temporal evolution of the 
confidence intervals. 

Additionally to evaluate the probability of obtaining similar final values of the 
simulations a probability density function (pdf) was calculated at each radius. 

Figures 12 and 13 show the simulation results, the mean value and the confidence 
intervals for several radii in the grid. Figure 14 shows the normal pdf for the final values 
of number of cells, negative migration, positive migration and mitosis. 
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Figure 12 MC Simulation results (see online version for colours) 
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Figure 13 Mean values and confidence intervals obtained for the MC simulations (see online 
version for colours) 
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Figure 14 Normal pdf of the final values of the MC simulations (see online version for colours) 

 

These results show similar behaviours for several simulations using similar conditions. 
The confidence intervals were consistent with the dynamical behaviour of the cell 
population; a more random behaviour is obtained in small areas (i.e., the centre and the 
corner of the dish), thus, larger confidence intervals are obtained for these radii. 
However, the obtained normal pdfs indicate that the results from simulations had the 
highest probability to be near the mean values. 
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7 Conclusions 

This work is an extension of a first approach to the spatio-temporal analysis of an  
agent-based model of NHK (Pichardo-Almarza et al., 2007). This analysis represents an 
important contribution for the study of the spatial distribution in stochastic processes 
where both type and position of the objects are involved. 

This kind of study is an important and necessary procedure for the validation of these 
models. A good method for the spatio-temporal analysis is particularly relevant to the 
understanding of the development of properly structured and functional tissue in  
multi-cellular organisms. 

The new variables defined in this paper allow more spatio-temporal information to be 
obtained from the computational model of NHK; these variables represent useful 
measurements in quantitative comparisons.  

The methods developed, allow a quantitative comparison of two simulations with 
respect to the spatial distribution of cells, how the cells move in the dish (migration) and 
the reproduction of cells (mitosis) using classical statistics methods. 

The spatial distribution has been compared by building a vector for each iteration 
with the number of cells in each ring of the grid. Thus, a linear regression can be 
calculated and a temporal evolution of the correlation factors can be obtained. 

Migration has been compared by observing how cells move from one ring to  
another. In this case, the ‘positive’ and the ‘negative’ migration can be compared in each 
ring for the total simulation time. Mitosis is compared using a method very similar  
to the migration method and simulations can be compared using a ‘Mitosis rate’.  
Finally, apoptosis is compared evaluating the number of cells dying in each iteration. 

In this work the behaviour of cells was analysed using the same calcium level 
(physiological calcium level). However, the calcium level is a parameter which can  
have a large influence on the behaviour of the cell population (Walker at al., 2006). 
Future research will include similar spatiotemporal analysis concerning the variation  
of this parameter and the influence on the dynamical response of the agent-based model. 

Algorithms are being formulated in Matlab (http://mathworks.com) for application  
in the analysis and comparison of data from different models and/or different 
experiments. The results obtained from this work are encouraging and it is expected that 
they will be useful in comparing experimental results from an accurate cell tracking 
system, which is currently under development as part of the Epitheliome project 
(http://www.epitheliome.com). 
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