Experimental investigation of propagation of wetting front on curved surfaces exposed to an impinging water jet
by M. Akmal, A.M.T. Omar, M.S. Hamed
International Journal of Microstructure and Materials Properties (IJMMP), Vol. 3, No. 4/5, 2008

Abstract: The wetting phenomenon during the cooling of a hot cylindrical specimen exposed to an impinging water jet has been studied experimentally. The Speed of Propagation of Wetting Front (SPWF) and regions of boiling heat that transfer outwards from the jet stagnation point have been investigated using high-speed video images. The effect of various jet parameters (velocity, diameter, water temperature) and the effect of the surface temperature on SPWF have been considered. Experiments were conducted under transient conditions considering initial specimen surface temperatures of 250°C, 500°C and 800°C, water temperatures in the range between 20°C and 80°C, jet velocities of 5 m/s and 7.75 m/s and jet diameters of 3 mm and 4 mm. For all of the jet and surface parameters considered in the study, SPWF was found to correlate well with power functions of time (i.e., instantaneous wetting front radius R=a(t)n)). Within the considered range of parameters, the results indicate that SPWF is mostly affected by the initial surface temperature, water temperature and jet velocity. Since control of the product microstructure is the key in determining its mechanical properties, the results of the investigation of the SPWF are used to quench carbon steel (1045) cylinders using different combinations of jet parameters. The results show a great flexibility in achieving various cooling rates, as indicated by the change in the final microstructure of the quenched samples.

Online publication date: Wed, 17-Dec-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Microstructure and Materials Properties (IJMMP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com