Simulation of near-tip crack behaviour and its correlation to fatigue crack growth with a modified strip-yield model
by Lei Wang, Yongkang Chen, William Tiu, Yigeng Xu
International Journal of Modelling, Identification and Control (IJMIC), Vol. 5, No. 1, 2008

Abstract: A modified strip-yield model has been developed to simulate the plasticity-induced crack closure under the constant amplitude (CA) and a single overload loading conditions. The paper focuses on the simulation of the near tip crack profiles and stress distributions during the fatigue process. Detailed information on near-tip stress and displacement fields at the maximum load (Pmax), the minimum load (Pmin), and the crack opening load (Pop) of a fatigue load cycle have been presented. The correlation of the crack closure to the near-tip material fatigue damage has been investigated and used to rationalise the crack growth behaviour under the CA and a single overload loading conditions.

Online publication date: Wed, 03-Dec-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com