A prediction methodology of disk brake squeal using complex eigenvalue analysis
by Abd Rahim AbuBakar, Huajiang Ouyang
International Journal of Vehicle Design (IJVD), Vol. 46, No. 4, 2008

Abstract: This paper presents a methodology for predicting disk brake squeal using the Finite Element (FE) method whereby a three-dimensional FE model of a real disk brake is validated at the component and assembly levels, and more importantly through contact analysis. Consideration of real surface topography of the friction material in the contact interface model represents a major advancement. Kinetic friction coefficients are determined from squeal tests. Two different friction characteristics with friction damping are simulated. The predicted results show that the refined contact interface model can improve accuracy of prediction and also reduce the number of redundant unstable frequencies.

Online publication date: Mon, 15-Sep-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com