Photovoltaic effect in single carbon nanotube-based Schottky diodes
by Jiangbo Zhang, Ning Xi, Hongzhi Chen, King W. C. Lai, Guangyong Li, Uchechukwu Wejinya
International Journal of Nanoparticles (IJNP), Vol. 1, No. 2, 2008

Abstract: Photovoltaic effects in individual single-walled carbon nanotube (SWCNT) based Schottky diodes were investigated for infrared detection in this paper. Different contact conditions (symmetric and asymmetric CNT-metal contacts) have been studied for optimising the performance of SWCNT-based infrared detector. Experiments demonstrated that the asymmetric structure could improve the photodiode performance by increasing the signal-to-dark current ratio up to two orders of magnitude higher than a symmetric device. With the perfect photodiode I-V characteristic curves, SWCNTs show a strong potential of applications in solar collection, infrared sensing and nanogenerators.

Online publication date: Thu, 11-Sep-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanoparticles (IJNP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com