Direct simulation of viscous flow in a wavy pipe using the lattice Boltzmann approach
by Lian-Ping Wang, Michael H. Du
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 1, No. 1, 2008

Abstract: Direct numerical simulation of three-dimensional (3D) viscous flow in a wavy pipe is performed using the lattice Boltzmann approach, to study 3D flow features in a curved pipe with nonuniform curvature. We first validate the lattice Boltzmann approach by simulating a transient flow in a straight pipe. In a wavy pipe, it is shown that the pressure gradient necessary to drive the flow depends more strongly on the flow Reynolds number, due to curvature – induced fluid inertial force and transverse secondary flows. The wavy pipe could provide a simple design for enhancing mixing and heat transfer in pipes.

Online publication date: Thu, 19-Jun-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com