A 1-D gas dynamics code for subsonic and supersonic flows applied to predict EGR levels in a heavy-duty diesel engine
by Yuhua Zhu, R.D. Reitz
International Journal of Vehicle Design (IJVD), Vol. 22, No. 3/4, 1999

Abstract: The development of a 1-D gas dynamics code for unsteady flow in internal combustion (IC) engines as well as its validation and application for predicting residual gas fraction are introduced in this paper. Some new approaches are presented for modelling flows in diverging ducts and for treating boundary conditions. These include the use of flow resistance correlation to describe separated flows and flows in bends. Excellent agreement with analytical solutions and test results has been obtained when the code was validated with fundamental gas dynamic problems, including converging-diverging nozzle flows with and without shocks; Fanno and Rayleigh flows; the Riemann shock tube problem; and engine rig experiments for modelling flow with different property gases. The code has been applied satisfactorily to predict the gas exchange process of a spark ignition (SI) engine following exhaust blow-down and exhaust gas recirculation (EGR) levels in a heavy-duty diesel engine.

Online publication date: Mon, 18-Aug-2003

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com