Failure precursor detection in complex electrical systems using symbolic dynamics
by R.P. Patankar, V. Rajagopalan, A. Ray
International Journal of Signal and Imaging Systems Engineering (IJSISE), Vol. 1, No. 1, 2008

Abstract: Failures in a plant's electrical components are a major source of performance degradation and plant unavailability. In order to detect and monitor failure precursors and anomalies early in electrical systems, we have developed a signal processing method that can detect and map patterns to an anomaly measure. Application of this technique for failure precursor detection in electronic circuits resulted in robust detection. This technique was observed to be superior to conventional pattern recognition techniques such as neural networks and principal component analysis for anomaly detection. Moreover, this technique based on symbolic dynamics offers superior robustness due to averaging associated with experimental probability calculations. It also provided a monotonically increasing smooth anomaly plot which was experimentally repeatable to a remarkable accuracy.

Online publication date: Sat, 12-Apr-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Signal and Imaging Systems Engineering (IJSISE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com