Quantum transport in one-dimensional GaAs hole systems
by A.R. Hamilton, O. Klochan, R. Danneau, W.R. Clarke, L.H. Ho, A.P. Micolich, M.Y. Simmons, M. Pepper, D.A. Ritchie, K. Muraki, Y. Hirayama
International Journal of Nanotechnology (IJNT), Vol. 5, No. 2/3, 2008

Abstract: In many advanced semiconductor devices, the physical dimensions are sufficiently small that quantum physics becomes important in determining the device behaviour. A celebrated example is the quantum wire, where in the absence of scattering the conductance is quantised in units of 2e²/h. Although electron quantum wires have been studied extensively for almost two decades, the development of hole quantum wires has been a significant challenge, limiting studies of hole-based devices. Here we review our recent work on hole quantum wires, and show how they can be used to probe the spin properties of hole systems. The ability to fabricate ballistic quantum wires, and control their spin properties using electrical gate biases, may have implications for future spintronic devices.

Online publication date: Wed, 30-Jan-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com