Molecular dynamics simulations of organoclays and polymer nanocomposites
by Q.H. Zeng, A.B. Yu, G.Q. (Max) Lu
International Journal of Nanotechnology (IJNT), Vol. 5, No. 2/3, 2008

Abstract: Understanding the interfacial interactions and structure is important to better design and manufacturing of nanoparticle-filled polymer nanocomposites. This paper presents our recent molecular dynamic studies on organically modified clays and polymer nanocomposites, including the swelling of clay minerals, molecular structure and dynamics in clay gallery, and interfacial interactions of polyurethane nanocomposites. The simulated results are in good agreement with the experimental measurements and observations. Quantitative analyses are made in atom density distribution, molecular tilt angle, order parameter, conformation, and mean squared displacement. Various layering structures (e.g., monolayer, bilayer, pseudo-trilayer and pseudo-quadrilayer) are observed in the gallery of organoclays, depending on the chain length of alkyl ammoniums and cationic exchangeable capacity of clays. In particular, the long alkyl chains do not lie flat within a single layer but interlace, and likely jump to the next layers. In polyurethane nanocomposite, the molecular interplays among clay surface, alkyl ammoniums and polyurethane chains lead to the absence of phase-separation of polyurethane, commonly observed in bulk polyurethane systems.

Online publication date: Wed, 30-Jan-2008

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com